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Abstract

The efficient computation of finite-frequency traveltime and amplitude sensitivity kernels for velocity and attenuation
perturbations in global seismic tomography poses problems both of numerical precision and of validity of the paraxial
approximation used. We investigate these aspects, using a local model parameterization in the form of a tetrahedral grid
with linear interpolation in between grid nodes. The matrix coefficients of the linear inverse problem involve a volume inte-
gral of the product of the finite-frequency kernel with the basis functions that represent the linear interpolation. We use
local and global tests as well as analytical expressions to test the numerical precision of the frequency and spatial quad-
rature. There is a trade-off between narrowing the bandpass filter and quadrature accuracy and efficiency. Using a mini-
mum step size of 10 km for S waves and 30 km for SS waves, relative errors in the quadrature are of the order of 1% for
direct waves such as S, and a few percent for SS waves, which are below data uncertainties in delay time or amplitude
anomaly observations in global seismology. Larger errors may occur wherever the sensitivity extends over a large volume
and the paraxial approximation breaks down at large distance from the ray. This is especially noticeable for minimax
phases such as SS waves with periods >20 s, when kernels become hyperbolic near the reflection point and appreciable
sensitivity extends over thousands of km. Errors becomes intolerable at epicentral distance near the antipode when sensi-
tivity extends over all azimuths in the mantle. Effects of such errors may become noticeable at epicentral distances > 140�.
We conclude that the paraxial approximation offers an efficient method for computing the matrix system for finite-fre-
quency inversions in global tomography, though care should be taken near reflection points, and alternative methods
are needed to compute sensitivity near the antipode.
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1. Introduction

Global tomographic studies using seismic body waves such as P and S have been so far mostly based on ray
theory, a high-frequency approximation of the elastodynamic wave equation. Ray theory ignores wave scat-
tering and wavefront healing effects, which render the traveltime anomalies dependent on the Earth structure
in a 3D region around the geometrical ray, rather than limiting the sensitivity to an infinitesimally narrow ray
path. Recently, Dahlen et al. [4,3] formulated efficient theories for 3D traveltime and amplitude sensitivity (or
Fréchet) kernels, using the paraxial approximation and dynamic ray tracing [19] to reduce the computational
effort. Dynamic ray tracing software to compute the geometrical spreading factors and second derivatives of
the traveltime along the wavefront, which are the parameters needed for the computation of finite-frequency
kernels, was described by [18], hereafter referred to as Paper I. This paper describes the algorithm that com-
putes the sensitivity kernel and its projection on a basis of linear interpolation functions and analyses the
numerical precision of the resulting matrix. An earlier version of the code was written by Montelli and applied
in tomographic imaging of delay times [11,12,10]. We have extended the code by including the computation of
finite-frequency kernels that can invert amplitude anomalies of seismic body waves in arbitrary frequency
bands for both velocity and attenuation maps of the Earth’s interior. In this paper we describe the computa-
tional algorithm and analyse its validity and numerical precision.
2. Overview

In finite-frequency tomography, the general form of the linear inverse problem is
di ¼
Z

V
KiðrÞmðrÞd3r: ð1Þ
The i-th datum di is either an observed delay time dTi or amplitude anomaly dAi/Ai. The volume integral is
theoretically over the entire Earth, but in practice limited to the region where Ki(r) has an appreciable ampli-
tude. The model parameter m represents a velocity perturbation dc/c or attenuation perturbation dQ�1/Q�1,
or both—in this paper we study single-parameter models only but the extension to multiple parameters is triv-
ial, and does not affect the analysis of numerical precision.

We discretize the continuous system (1) to
mðrÞ ¼
X

j

mjbjðrÞ;

di ¼
X

j

Aijmj;

Aij ¼
Z

V
KiðrÞbjðrÞd3r;

ð2Þ
where the functions bj(r) are a suitable basis—generally interpolation functions between a grid of nodes. In the
following section we introduce such a basis for a tetrahedral grid and describe the algorithm to evaluate the
integral in (2).
3. Numerical quadrature of the kernel equations

3.1. Model parameterization

Following Sambridge et al. [16,17] and Nolet and Montelli [14] we use an adaptive tetrahedral grid to span
the Earth. Grid spacing can be adapted to local resolution determined by the data. We adopt a Delauney tet-
rahedralization using qhull software (Barber et al. [1] and http://www.qhull.org). For any given location r,
we locate the four vertices r1; r2; r3; r4 of the tetrahedron t that encloses r, using the search algorithm developed
by Sambridge and Gudmundsson [17] (see also Menke [9]). An explicit expression for the basis of interpolation
functions bt

1ðrÞ; bt
2ðrÞ; bt

3ðrÞ; bt
4ðrÞ for tetrahedron t is given by [17]

http://www.qhull.org
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bt
4ðrÞ ¼

ðr� r1Þ � ½ðr2 � r1Þ � ðr3 � r1Þ�
ðr4 � r1Þ � ½ðr2 � r1Þ � ðr3 � r1Þ�

; ð3Þ
where the expressions for bt
1ðrÞ; bt

2ðrÞ; bt
3ðrÞ are given by an obvious permutation of the indices. We pre-com-

pute the fixed coefficients in (3) for each tetrahedron to increase efficiency.

3.2. Sensitivity kernels

We give the expressions of the sensitivity kernel Ki(rx) in (1) under the paraxial approximation for different
types of data and model parameters. The paraxial approximation assumes that scatterers influencing the data
are located close to the ray within the first a few Fresnel zones. This allows us to ignore the difference in exci-
tation, impedance, reflection and transmission coefficients between scattered and direct waves. The paraxial
approximation also makes it reasonable to approximate the scattering coefficient by 1, i.e., assuming a small
angle between and the same wave type of incoming and scattered rays.

� For di = dTi and m = dc/c (Dahlen et al. [4]):
KiðrxÞ ¼ Kc
T ðrxÞ ¼ �

1

2pcðrxÞ
� Rrs

crRxrRxs
�
R1

0
x3j _mðxÞj2 sin½xDT ðrxÞ � DUðrxÞ�dxR1

0
x2j _mðxÞj2 dx

: ð4Þ
� For di = dAi/Ai and m = dc/c (Dahlen et al. [3]):
KiðrxÞ ¼ Kc
AðrxÞ ¼ �

1

2pcðrxÞ
� Rrs

crRxrRxs
�
R1

0
x2j _mðxÞj2 cos½xDT ðrxÞ � DUðrxÞ�dxR1

0 j _mðxÞj
2 dx

: ð5Þ
� For di = dAi/Ai and m = dQ�1/Q�1 (Nolet [13]):
KiðrxÞ ¼ KQ
A ðrxÞ ¼ �

Q�1

4pcðrxÞ
� Rrs

crRxrRxs
�
R1

0 x2j _mðxÞj2 sin½xDT ðrxÞ � DUðrxÞ�dxR1
0
j _mðxÞj2 dx

: ð6Þ
In (4)–(6), cr is the seismic velocity at the receiver. The Rrs;Rxs and Rxr are geometrical spreading factors,
where subscripts rs; xs and xr represent the ray paths from source to receiver, source to scatterer, and receiver
to scatterer, respectively. The detour time DT = Txs + Txr � Trs is the extra time that the scatterer needs to
arrive at the receiver. The detour time is determined with dynamic ray tracing by [19]:
DT ¼ 1

2
qTHq; ð7Þ
where H is the Hessian matrix:
H ¼
H 11 0

0 H 22

� �
¼ o2T =oq2

1 0

0 o
2T=oq2

2

 !
q¼0

;

and q ¼ ðq1; q2Þ
T are ray centered coordinates perpendicular to the ray defining the location of the scatterer on

the wavefront (Fig. 1). The ratio Rrs=ðcrRxrRxsÞ can equally be obtained once H is computed [4]:
(source)s

(receiver)r

q1

q2

(scatterer)

’’
l

q

x

geometrical ray

Ray centered coordinates of scatterer rx ¼ ðl; q1; q2Þ
T, where 0 6 l 6 L is the length of the geometrical ray measured from source.

s l, q1 and q2 are mutually perpendicular, with l and q1 in the source–receiver plane.
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Rrs

crRxsRxr
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detðHÞj

p
: ð8Þ
DU is the phase shift due to passage through caustics or super critical reflection. Unless the wave is supercrit-
ically reflected with an angle-dependent phase shift, DU takes three possible values: 0;�p=2;�p [4,7]. The
spectrum _mðxÞ in the frequency integrals is the Fourier transform of source time function _mðtÞ. We preserve
the customary ‘dot’ notation, which reflects the fact that the observed seismic pulse is the derivative of the
displacement at the fault surface. However, when the seismograms are filtered before delay times or ampli-
tudes are measured, _mðxÞ is the product of the source spectrum and the filter passband, and will usually clo-
sely resemble the shape of the filter if x is less than the corner frequency of the source spectrum.

Computing sensitivity kernels (4)–(6) involves computing frequency integral ratios, denoted as
Ip;k½DT ; _mðxÞ� ¼

R1
0

xpj _mðxÞj2
sinðxDT Þ
cosðxDT Þ

� �
dxR1

0
x2ðp�2Þj _mðxÞj2 dx

;
ð9Þ
which, when combined with sinDU and cosDU can express any phase shift. The power p can take the value 2
(for Kc

A and KQ
A ) or 3 (for Kc

T ). k = 1 for a sin(xDT) dependence, 2 for cos (xDT). To gain efficiency, for a spe-
cific j _mðxÞj, we pre-compute and store a table of Ip;k at a set of uniformly spaced DT for interpolation. The
spacing of DT is frequency-band-dependent, particularly, taken as 0.1 · 2p/xm, with xm the highest frequency
in the corresponding band.

3.3. Constructing the sensitivity matrix Aij

We compute the integral in (1) by a simple Riemann sum, i.e., we split the volume into volumes DVp, much
smaller than the tetrahedra, around a regularly spaced grid of points rp:
di ¼
X

p

KiðrpÞmðrpÞDV p: ð10Þ
To relate m(rp) to the parameter values mj at model nodes, we find the tetrahedron tp that encloses rp and
interpolate:
mðrpÞ ¼
X4

k¼1

btp

k mtp
k :
With this, (10) becomes
di ¼
X

p

KiðrpÞ
X4

k¼1

btp
k mtp

k DV p ¼
X

p

X4

k¼1

½KiðrpÞbtp
k DV p�mtp

k : ð11Þ
To construct Aij in (2) from (11), each tetrahedron vertex ðmtp

k Þ is mapped back to its original parameter index
(mj), so that each volume element DVp contributes to four elements of row i of matrix Aij, i.e.,
Aij  Aij þ KiðrpÞbtp

k DV p; k ¼ 1; . . . ; 4: ð12Þ

Each element Aij is initially set to zero and increases whenever there is contribution from the integral volume
element DVp, according to (12).

To construct the grid rp, we adopt ray centered coordinates rx ¼ ðl; q1; q2Þ
T where the l-direction is along the

ray path (Fig. 1). The integration is done by stepping along the ray, using a step size dl, and define DVp

between two consecutive planes perpendicular to the ray (Fig. 2a and b, planes A and B). The volume element
is DVp = dSdh, where dS is the surface element in plane B, and dh is the distance from rp (the center of dS) to
plane A. In many cases H11 � H22, so that the kernel cross-section is approximately circular. We therefore
transform from ray centered coordinates ðq1; q2Þ to polar coordinates (q,h) (Fig. 2c): dS = qdqdh, and inte-
grate from q = 0 to qm. Note that the integration step size dl, dq has to be much smaller than the model grid
spacing (see Section 3.1), to make valid the assumption in (10) that the model parameter is constant over DVp.
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Fig. 2. The numerical scheme for kernel quadrature. (a,b) The source–receiver plane with ray centered coordinates (Fig. 1). Planes A and
B are perpendicular to the ray with a distance along the ray equal to the ray tracing step size dl. DVp = dSdh with dS being the surface
element in plane B, and dh the distance from the center of dS to plane A. (c) Polar coordinates (q,h) in plane B used for surface integration,
dS = qdqdh. Point rp is at the center of dS.
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An exception is that for surface reflected waves such as PP, the kernel cross-section can be hyperbolic, but the
tests presented in the next section show that polar coordinates do a fairly good job for these cases.

Using (7), the largest integration radius qm is defined by
qm ¼ min
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DT m=minðH 11;H 22Þ

p
; qlim

� �
: ð13Þ
It is determined by the maximum detour time DTm
DT m ¼ minðDT xc;DT limÞ; ð14Þ

where

(1) DTxc is the maximum length of the cross-correlation windows used to measure delay times and
amplitudes;

(2) DTlim is the detour time for which the kernel becomes negligible, i.e., jKðDT > DT limÞj < �jKjm, where
jKjm is the maximum absolute value of the kernel.

Note from (13) that qm varies along the ray. The limiting radius qlim is needed to avoid the extension of the
integration beyond the limits where the paraxial approximation is still reasonably valid. Violations of the
assumption of paraxiality occur when DT remains small for very large excursions away from the ray. Clearly,
including such regions in the integration becomes meaningless. We adopted qlim = 1000 km for most of our
calculations, but discuss this issue further in the next section.

Ideally, data are measured in several frequency bands, and it is efficient to define DTm and qm depending on
frequency. For the same reason, we define the step sizes dq and qdh to vary along the ray and with frequency, e.g.
dq ¼ minð0:05qm; dq0Þ; ð15Þ

where dq0 is a constant upper limit of dq.

3.4. Singularities at sources, receivers and caustics

At sources, receivers, and caustics of PP, SS, etc, the Hessian matrix H becomes singular ([4], Paper I), and
so do sensitivity kernels (4)–(6). To avoid this, we isolate a small sphere V0 around a singular point and apply
ray theory in this sphere. The delay time due to passage through the sphere is then
dT ¼
Z

l2V 0

dl
cþ dc

�
Z

l2V 0

dl
c
� �

Z
l2V 0

1

c
dc
c

� �
dl; ð16Þ
where c is the background velocity and the line integral is along the ray path in the sphere. Comparison of (16)
and (1) shows that the ‘‘ray-theoretical traveltime kernel’’ is Kc

T ¼ �c�1, and correspondingly, (12) becomes
Aij  Aij � c�1ðrlÞbtl
k dl; k ¼ 1; . . . ; 4; ð17Þ
where rl represents the point on the ray in sphere V0.
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In a similar way, we can remove the singularity for KQ
A of the attenuation anomaly dQ�1/Q�1. The ampli-

tude anomaly due to passage through the sphere for a particular frequency is
Fig. 3.
geome
rays o
there a
(b) x o
geome
dA
A
¼

exp � x
2

R
l2V 0

Q�1þdQ�1

c dl
� �

� exp � x
2

R
l2V 0

Q�1

c l
� �

exp � x
2

R
l2V 0

Q�1

c dl
� � � �x

2

Z
l2V 0

Q�1

c
dQ�1

Q�1

� �
dl: ð18Þ
For a wave with frequency spectrum _mðxÞ, following Dahlen et al. [4], it can be shown that x in (18) should be
replaced by its weighted average (Appendix A)
�x ¼
R1

0
xj _mðxÞj2 dxR1

0 j _mðxÞj
2 dx

: ð19Þ
Comparison of (18) and (1) gives the corresponding formula of (12) for the ‘‘ray-theoretical amplitude–atten-
uation kernel’’:
Aij  Aij �
�xQ�1ðrlÞ

2cðrlÞ
btp

k dl; k ¼ 1; . . . ; 4;
where rl represents the point on the ray in sphere V0.
For Kc

A, we further assume that dc/c is constant in the sphere V0. The assumption of homogeneous velocity
perturbation is valid because V0 is small (radius �20 km) and we include source and receiver amplitude cor-
rections into the unknowns to be inverted for. A constant dc/c does not affect the ray path, and therefore
leaves the amplitude unchanged (impedance effects are neglected). Therefore, in sphere V0, the amplitude ker-
nel Kc

AðrÞ ¼ 0, and model nodes (mj) have no contribution to matrix Aij.
Besides singularities, we also ignore the near-field effects in regions close to source or receiver, which cannot

be modeled by ray-theory-based sensitivity kernels, so the kernels are less accurate in these regions [6].

3.5. Near discontinuous interfaces

We need to mirror scatterers near reflective boundaries. For reflected phases such as PP, pP, and ScS, a
heterogeneity near the reflection point will contribute more than one scattered wave. The situation is explained
in Fig. 3 for PP, where a scatterer near the Earth’s surface produces two forward scattered waves (we neglect
the backward scattering). For the first scattered wave (Fig. 3a), scatterer x sits on its incoming leg. The detour
qa
bq

qb’

surface
Earth’s

li lo li
lo

xscatterer xscatterer

ba
x’

The ‘mirroring’ procedure for scatterers near reflective boundaries, taking PP wave as an example. Thin solid arrows represent
trical rays, with li denoting the incoming leg, and lo the outgoing leg. Dashed arrows represent scattered rays. Dotted lines extend
ut of the reflective boundary. qa, qb, q0b are off ray vectors in ray centered coordinates (Fig. 1). Under the paraxial approximation,
re two scattered waves from the same scatterer x near the surface reflection point: (a) x on the incoming leg of the scattered wave,
n the outgoing leg of the scattered wave. x and its mirror image x 0 about the reflective boundary have the same detour time and
trical spreading.
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time DTx is determined by Hessian matrix Ha, and the scatterer’s displacement qa from the incoming leg li of
the geometrical ray. For the second scattered wave (Fig. 3b), scatterer x sits on its outgoing leg. DTx is deter-
mined by Hb, evaluated at the projection of x onto the outgoing leg lo of the geometrical ray, and qb, the scat-
terer’s displacement from lo. Though the projection of x onto lo is out of the Earth, we take the mirror image
x 0 of x about the Earth’s surface. Notice qb ¼ q0b, so DT x ¼ DT x0 . The above analysis for surface reflections also
works for core reflections such as ScS.

Whenever the wavefront crosses a discontinuity, the paraxial approximation extrapolates the wavefield at
the interface by maintaining the parabolic shape of the wavefront. The resultant error can only be avoided if
one discards the paraxial approximation (e.g. [2]). However, the tests presented in the next section show that
we are justified in ignoring this.

4. Numerical Tests

In this section we present the results of numerical tests. Since the computation of the matrix elements forms
the major computational effort in seismic tomography, the trade-off between computational efficiency and
numerical accuracy is an important issue.

The data we measure have large errors, typically 0.5–1 s (for global tomography) in delay times of at most a
few seconds, thus the relative precision is usually worse than 10%. The errors in amplitude anomalies may even
be larger, though these are still very much unknown. This means that errors of the order of a few percent in Aij

are acceptable.

4.1. Examples of sensitivity kernels

We first present some kernels computed for a spherically symmetric earth (IASP91), with a Gaussian source
time function _mðtÞ, for which the power spectrum is [8]
j _mðxÞj2 ¼ ðx2s2=2pÞ expð�x2s2=4p2Þ: ð20Þ

Figs. 4–6 display cross-sections of the three kernels Kc

T ;K
c
A;K

Q
A (see (4)–(6)) for an S wave observed at an epi-

central distance of 60� with a dominant period of s = 10 s. The typical ‘banana-doughnut’ character of the
kernels, with zero sensitivity (white, see Fig. 4) for delay times on the ray itself, is apparent. In fact, the atten-
uation kernel KQ

A also has zero sensitivity along the geometrical ray, where Kc
A has peak sensitivity. The finite-

frequency effect is strongest at the center of the ray (the doughnut is largest where the ray is deepest). Closer to
the source or receiver, the doughnut is smaller but the sensitivity per km3 is higher. For all the three kernels,
the sensitivity is negative in the first Fresnel zone, which is understandable: an increase in dc/c decreases dT; it
also defocuses the wave, and thus decreases dA/A, as does an increase in attenuation dQ�1/Q�1. The first Fres-
nel zone is surrounded by a second Fresnel zone with weaker but positive sensitivity. The sensitivity becomes
negligible beyond the second Fresnel zone. The typical amplitude of KQ

A is almost three orders of magnitude
less than that of Kc

A, and the difference is closer to two orders of magnitude in low Q regions like the astheno-
sphere. Variations of attenuation with respect to the background model may also be two orders of magnitude
larger than dc/c. This can make dA/A due to dQ�1/Q�1 comparable to dA/A due to dc/c. Even so, it is clear
that attenuation studies have limited validity when not combined with an estimate of the focusing involved. A
similar conclusion is drawn by Ritsema et al. [15].

Figs. 7–9 display the three kernels Kc
T ;K

c
A;K

Q
A (see (4)–(6)) for an SS wave observed at an epicentral distance

of 120�, with a dominant period of s = 10 s. The SS wave sensitivity from source/receiver to the nearest caustic
(at 40	 and 80�) has a similar elliptical pattern as the S wave sensitivity; however, the sensitivity between two
caustics has a more complex, hyperbolic pattern, because DU = �p/2 between the two caustics. The Kc

A cross-
section between the two caustics resembles a saddle, with zero sensitivity on the asymptotes, whereas Kc

T and
KQ

A cross-sections have strongest (negative) sensitivity on the asymptotes. The aspect ratio of either the ellipse
or the hyperbola becomes larger as the cross-section gets closer to the caustics, because the aspect ratio is
determined by the ratio jH11/H22j, and as the cross-section approaches the caustics, jH11j goes to infinity with
H22 remaining finite (Paper I). Similar plots of Kc

T and Kc
A have earlier been presented by Hung et al. [7] and

Dahlen and Baig [3].
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4.2. Precision of the frequency integration

We checked the precision of Ip;k in (9) using an analytical expression for the spectrum given in (20). Favier
and Chevrot [5] found
In 

R1

0 x3j _mðxÞj2 sinðxDT ÞdxR1
0

x2j _mðxÞj2 dx
¼

8DT exp � DT 2p2

s2

� �
p6 DT 4 � 5s2DT 2

p2 þ 15s4

4p4

� �
3s6


 Ia:
We integrate over the interval 0 6 x 6 xmax, where j _mðxmaxÞj ¼ 0:01j _mðxÞjmax, and use a trapezoidal rule with
40 intervals. The relative numerical error,
eI ¼ jIn � Iaj=max jIaj; ð21Þ
shown in Fig. 10, is about 2 orders of magnitudes less than data uncertainties.
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4.3. Influence of filters

As discussed in Section 3.2, j _mðxÞj usually closely resembles the spectra of bandpass filters used to measure
the data, assuming one has an acceptable signal to noise ratio over a wide frequency band (which may not
always be the case for marine seismic data). We investigate the influence of choice of filters. We compute
I3;1 in (9) for three filters with different width and shapes, but the same dominant period s = 24 s, as shown
in Fig. 11. It is clear that larger and longer side lobes of I3;1, i.e., larger higher-order Fresnel zones, occur
for narrower and less smooth filters. In practice, suppressing the higher-order Fresnel zones is needed for effi-
ciency and accuracy, because the kernel integration boundary is defined by 13,14,14, and: (1) Higher-order
Fresnel zones with high sensitivity give larger DTlim, and thus larger computation effort; (2) qm is limited
by the signal length DTxc, whose typical value for s = 24 s is 50 s, which cuts through the non-zero higher-
order Fresnel zones for narrow filters in 11b; (3) qm is also limited by qlim, to avoid sensitivity beyond the limit
of validity of the paraxial approximation, which may similarly cut through the non-zero higher-order Fresnel
zones for narrow filters. Therefore, broader and smoother filters are preferred. On the other hand, filters can-
not be too broad because of the need to measure data with different frequency contents. Hence, there is a
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trade-off between narrowing the band and computational accuracy and efficiency. A practical criterion is that
the filter should be wide enough so that Ip;kðDT > DT xcÞ is negligible.

4.4. Precision of the kernel quadrature

4.4.1. Designing tests

Much of the gain in efficiency is obtained by designing the kernel integration to be fast with errors allowed
as large as, but not exceeding, a few percent (say, 0.03). There are several ways to test the integration precision.
All are based on the notion that for very long wavelength model perturbations of very small amplitude, ray
theory should be equally valid as first order Born theory. Since the kernel itself is independent of the amplitude
and shape of dc/c or dQ�1/Q�1, the quadrature for such small perturbations should revert to the ray-theoret-
ical result. This leads to the following tests:

(1) Kc
T . For a constant velocity perturbation dc/c = �! 0:
T þ dT ¼
Z

dl
cþ dc

�
Z
ð1� �Þ dl

c
¼ T � �T ;
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thus dT = ��T. On the other hand, dT ¼ �
R

Kc
T d3r. Therefore

IT 1 

Z

Kc
T d3r ¼

X
j

Aij ¼ �T :

In addition, under the assumption of large scale of dc/c the integral of Kc
T over a disk S perpendicular to

the ray satisfies [4]

IT 2 

Z

S
Kc

T d2r ¼ � 1

c
;

where c is the velocity on the ray. Using these results, we define two relative quadrature error estimates
of Kc

T :

eT 1 ¼ jIT 1=T þ 1j; eT 2 ¼ jcIT 2 þ 1j: ð22Þ
Whereas eT1 is global, eT2 is local and can be followed along the ray.
(2) Kc
A. A constant velocity perturbation dc/c does not affect the focusing/defocusing of rays, so dA = 0. On

the other hand, dA=A ¼
R

Kc
Aðdc=cÞd3r. Therefore
IA1 

Z

Kc
A d3r ¼

X
j

Aij ¼ 0:
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Since this has to be the case over every sub-interval on the ray, the integral of Kc
A over a disk S perpen-

dicular to the ray satisfies

IA2 

Z

S
Kc

A d2r ¼ 0:

Using these results, we define two relative quadrature error estimates of Kc
A, the first one global and the

second one local:

eA1 ¼ I�A1=IþA1 þ 1
		 		; eA2 ¼ I�A2=IþA2 þ 1

		 		; ð23Þ

where + and � represent quadratures over subdomains where the integrand is positive and negative,
respectively.
(3) KQ
A . Following Dahlen et al. [4], it can be shown that under the assumption of large scale of dQ�1/Q�1,

there are (Appendix A):
IQ1 

Z

KQ
A d3r ¼

X
j

Aij ¼ �
�xt�

2
;

IA2 

Z

S
KQ

A d2r ¼ � �xQ�1

2c
;
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where �x is defined by (19), t� ¼
R

Q�1 dl=c, and c;Q are the velocity and quality factor on the ray, S rep-
resents a disk perpendicular to the ray. Using these results, we define two relative quadrature error esti-
mates of KQ

A , the first one global and the second one local:

eQ1 ¼
2IQ1

�xt�
þ 1

				
				; eQ2 ¼

2cIQ2

�xQ�1
þ 1

				
				: ð24Þ
We note that these tests include the effects of errors in the frequency integrals as well as in the factors result-
ing from the dynamic ray tracing, and the limitations of the paraxial approximation. In earlier research (Paper
I), we found that the numerical errors of Hessian matrices are generally somewhat larger for S waves than for
P waves. Therefore, we perform tests on the ‘worst case’, i.e., on shear waves.

4.4.2. Testing results

Fig. 12 shows eT 1; eT 2; eA1; eA2; eQ1; eQ2 for three frequency bands. For S waves (Fig. 12a–c), all computa-
tional errors are well below typical data standard deviations of 10%. We can also see that disk integration
errors eT2, eA2, eQ2 are almost the same for different bands. The Kc

A volume integration error eA1 is largest
for the shortest period, probably due to the rapid oscillation of the kernel w.r.t. DT. For SS waves
(Fig. 12d–f), the best traveltime uncertainties are of the order of 1 s, well above the quadrature precision, even
for the longest period of 24 s. Amplitude kernel quadrature errors are equally acceptable.
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A closer inspection of Fig. 12, however, shows a rather complicated behavior of SS errors near and in
between the two caustics. With some experimenting, we found that the two error spikes for s = 6 s can be
removed by decreasing the disk integration step size dq in (15), or by increasing the radius r0 of the sphere
V0 around a caustic (Section 3.4). This indicates that these very localized errors are a consequence of the sin-
gular behavior of the kernels near a caustic. This problem is more benign at longer periods where the kernel
changes more gradually.

This is not true for another type of error: for the longest period, Kc
T ;K

c
A;K

Q
A all have large disk integration

errors between two caustics. This is where the Hessian element H11 becomes negative (Paper I), and the kernel
shape becomes hyperbolic instead of elliptical or circular. Along the asymptotes of this hyperbola, the detour
time remains zero, independent of the distance to the ray. By imposing a finite integration limit qm (see (13)),
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we exclude scatterers of large sensitivity, located outside of the surface of integration. We found that the large
errors between caustics can be removed by increasing qlim in (13) to include more scattered waves. This, how-
ever, leads soon to unphysical situations because the scatterer is outside of the region where the paraxial
approximation is meaningful. This ‘hyperbolic problem’ is most serious for the longest period, because the
longer period wave has a broader kernel and a larger DTm, which makes the first term in (13) exceed qlim.

4.5. Effects of epicentral distance on kernel quadrature precision

A similar but more serious precision problem occurs for waves observed near the source antipode. Fig. 13
shows effects of epicentral distance D on eT 1; eA1; eQ1, and the average eT 2; eA2; eQ2 over the entire ray. Guided by
the results of the last section, we focus on the bands with largest errors, i.e., the shortest period band for S

waves and the longest period band for SS waves. For S waves (Fig. 13a), all errors are of the order of a
few percent regardless of the epicentral distance. eT 1; eA1; eQ1 tend to decrease with D, which is consistent with
the trend of Hessian element errors with D (Paper I).

For SS waves (Fig. 13b), kernel integration errors are obviously larger due to the ‘hyperbolic problem’, but
still acceptable for D 6 140�. The threshold of 140� depends on the wave period. Errors for s > 24 sec are lar-
ger than in Fig. 13b, but smaller at shorter periods. Beyond 140�, kernel integration errors increase rapidly,
again due to the behavior of the kernel in between the two caustics. When D is close to 180�, H22� jH11j,
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so the hyperbola is strongly flattened, and the region widens alongside the asymptote where DT � 0. Conse-
quently, the exclusion of the integration surface for q > qm has a larger effect. Physically, the error can be
understood when we realize that for a station at the antipode, waves departing the source in all azimuths arrive
at this station: the assumption of equal excitation for direct and scattered waves breaks down; the sensitivity is
spread over the whole mantle and the kernel is no longer banana shaped or even localized. Instead, the kernel
looks like two hollow cones with one vertex at source and the other vertex at receiver. If data at D > 140� are
crucial in the data set, efficient paraxial methods cannot be used, but an alternative method used by Calvet and
Chevrot [2], who set up a table of traveltimes and geometrical spreading for sources at every depth and every
epicentral distance traveled, may still provide correct de-localized kernels.

4.6. Effects of step size on kernel quadrature precision

Since the CPU time devoted to the computation of the matrix reduces with the third power of the integra-
tion step size (or the square of dq if it is varied independently from dl), it is important to determine the largest
step size that still yields an acceptable precision. Fig. 14 shows the kernel integration error as a function of dq
(see Fig. 2). Again, we opt for a ‘worst case’ scenario and select cases with largest errors from last two sections:
for S waves, the shortest period band and D = 35�; for SS waves, the longest period band and D = 130�. The
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small values of eT1,eA1,eQ1 at large dq are a consequence of the cancellation of the rapid positive–negative
oscillations of eT 2; eA2; eQ2 near singular points, so the averages of eT 2; eA2; eQ2 over the ray are better error esti-
mates. To obtain kernel integration errors of a few percent, which are below typical data uncertainties, the
optimum dq is about 10 km for S waves and about 30 km for SS waves. The high errors at larger dq are
mainly due to high errors near singular points.

The step size along the ray dl is determined in the earlier stage of dynamic ray tracing (Paper I). It affects the
kernel quadrature precision by affecting the precision of the Hessian elements. The optimum dl we found in
Paper I (about 20 km) is of the same order as the optimum dq.

Note that each point in Fig. 14 is produced with a constant dq independent of ray path. The optimum dq
obtained in this way represents the minimum dq required along the entire ray path, usually near singular
points where the kernel is the thinnest. However, near the center of the ray, the kernel becomes much wider,
and using the same minimum dq in this region is obviously very inefficient. In practice, we use a dq depen-
dent on kernel width with an upper limit, as described by (15). This significantly decreases the computational
time, for example, by �56% for the SS wave in Fig. 14b with dq = 20 km while obtaining the same precision.
In addition, we make dq frequency dependent by using (13)–(15), which further reduces the computational
time by a factor approximately equal to the inverse ratio of the dominant periods of different frequency
bands.

5. Conclusions

We investigated the quadrature precision for efficient computation of matrix coefficients needed in finite-
frequency seismic tomography. Under normal circumstances, acceptable precision is easily obtained for min-
imum integration step size of 10 km for S waves and 30 km for SS waves. The computational errors are a
product of the simple Riemann integration we adopted. For S waves, kernel quadrature precisions are lowest
for waves with shortest period, and increase with decreasing epicentral distance. Since much of the error can
be traced back to the variation of the integrand within the volume DVP, a polynomial representation of the
integrand within each volume element would potentially allow us to increase dq while maintaining precision
by solving the integral analytically for each DVP. This, however, is no panacea for another type of error we
discovered: For SS waves, kernels become hyperbolic instead of elliptical between two caustics, which makes
the paraxial approximation less valid. This can potentially produce large errors. These errors are most pro-
nounced for waves with long periods (>20 s) and near antipodal epicentral distances (>140�). The error at long
periods can be kept under control by reverting to ray theory near a singularity. The error at large distances
forces us to abandon the paraxial approximation.
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Appendix A. Designing tests on Q kernel quadrature precision

Following Dahlen et al. [4] (Section 7), we derive the analytical expressions for KQ
A quadrature precision

tests. Using (8), rewrite (6) as
KQ
A ¼ �

Q�1

4pc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detðHÞj

p R1
0

x2j _mðxÞj2 sin HdxR1
0
j _mðxÞj2 dx

;

where H ¼ xDT � DU. In ray centered coordinates ðl; q1; q2Þ, a surface element in the q1–q2 plane (Fig. 1) is
dS ¼ ð1þ

P
iqioc=oqiÞdq1 dq2. We integrate KQ

A over a disk S perpendicular to the ray
IQ2 

Z

S
KQ

A dS ¼ � 1

4p

Z
S

dq1 dq2 1þ
X

i

qi

oc
oqi

 !
Q�1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detðHÞj

p R1
0

x2j _mðxÞj2 sin HdxR1
0
j _mðxÞj2 dx

: ð25Þ
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In practice, S is limited to the region where KQ
A has an appreciable amplitude. If the lateral scale of dQ�1/Q�1 is

much larger than the seismic wavelength, oc/oqi � 0 and Q�1, c can be approximated by their values on the
ray. Hence
IQ2 ¼ �
1

4p
Q�1

c

				
ðl;0;0Þ

R1
0

dxx2 j _mðxÞj2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detðHÞj

p R
S sin Hdq1 dq2R1

0
j _mðxÞj2 dx

:

Using the Gaussian integral identity
R

S sin Hdq1 dq2 ¼ 2p=ðx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detðHÞj

p
Þ, we get
IQ2 ¼ �
�x
2
� Q
�1

c

				
ðl;0;0Þ

;

where �x is defined by (19). Thus, we have obtained (19) and the second equation of (24). To derive the 1st
equation of (24), we only need to integrate IQ2 along the ray (ray length L):
IQ1 ¼
Z L

0

IQ2 dl ¼ � �x
2

Z L

0

Q�1

c
dl ¼ � �xt�

2
:
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